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Abstract—We present a novel method of which synthesizes a 
variety of transitions for multiple actions of human characters 
from a small amount of motion data. This method effectively 
combines both motion graphs and a splicing technique. So we call 
the method splicing motion graphs. The motion graph represents 
a set of motion segments using graph structure to store the 
transition possibilities from one segment to another. We 
independently construct motion graphs for the upper- and lower-
bodies to splice them. Furthermore, we propose a method to 
synchronize the infinite length motions of the upper- and lower-
bodies. We show our method can efficiently generate animations 
by illustrating synthesized motions and by evaluating the 
generation speed and the generation accuracy of the animations. 
We conclude our method is fast enough to generate animations at 
interactive rates, allowing us to generate infinite-length character 
animations with specified constraints. 
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I.  INTRODUCTION 

Human characters with realistic motions are widely used in 
a variety of media such as movies, video games, Metaverse, 
and so on. To reproduce such motions, motion capture is often 
used because it is reliable and useful. Motion sequences can 
also be synthesized with a set of motion capture data by using 
motion graphs [1] which preserve the quality of the original 
motion data. Here users can control characters who can 
perform a transition of multiple actions, and even infinite-
length animation of a human character can be generated. 

A variety of character motions can be reproduced from a 
limited amount of motion data stored in a database using a 
splicing technique [2]; n× m character motions can be 
generated from n locomotion data and m upper-body actions. 
This technique is useful but it does not allow us to specify such 
constraints as splicing points and paths along which to move 
that are drawn on the ground. 

This paper proposes splicing motion graphs which 
synthesizes a variety of transitions of multiple actions of 
human characters from a small number of motion data by 
effectively combining both motion graphs and a splicing 
technique. In addition to simply combining these two 
techniques, a method to synchronize the motions of the upper- 

and lower-bodies is proposed. Thus the method can synthesize 
the realistic motions of human characters by interactively 
specifying constraints. 

II. RELATED WORK 

Various techniques have been proposed for generating 
human animations based on motion graphs [1]. Shin proposed a 
fat graph that parameterizes similar transitions in the graph [3]. 
Animations can be controlled by a mouse and a joystick. 
Moreover, Heck introduced a parametric motion graph that 
generates a parametrical space from a similar motion segment 
[4]. In this way, it can generate human animation in real-time. 
However, these algorithms lose detailed behavior in the motion 
data because they merge nodes that represent original motion 
in the motion graphs. 

In addition, many techniques for achieving synchronization 
between two bits of motion data have been proposed. Kovar 
synchronized with Dynamic Time Warping (DTW) based on 
posture distance [5]. To generate natural movement 
animations, this technique only synchronized similar motions. 
Menardais proposed a real-time synchronization approach [6] 
that achieved synchronization to combine the supporting legs 
and DTW. However, this technique needs to search for the 
ranges that can be synchronized beforehand. In this paper, we 
achieve synchronization by combining [5] and [6]. 

III.  ANIMATION GENERATION 

A. Method Overview 

To interactively generate animations based on user-
specified constraints, we have to execute processing that 
searches for necessary motions from motion graphs and 
synchronizes the velocity differential between upper- and 
lower-body motions after the user draws a path. So we execute 
other processing as preprocessing. Fig. 1 shows the flow of our 
method and its two parts: preprocessing and runtime. In 
preprocessing, we calculate some data that need for generating 
animation. In runtime, we generate animation based on user-
specified constraints. 



 
 

Figure 1.  Flow of our method. 

B. Preprocess 

1) Creation of Motion Graphs 
We represent motions using a standard skeleton model. For 

splicing, we divide the motion data into upper- and lower-body 
motions with a central focus on the pelvis based on the method 
[2].  

After defining the motion data, we independently construct 
two types of motion graphs: an action for the upper-body and a 
movable one for the lower-body. These motion graphs are 
constructed from a given motion data set by the standard 
construction technique [1]. Here, we also use mirroring motion 
data to deal with the user-specified constraints flexibly. Then, 
we simplify the constructed motion graphs to reduce 
calculation costs by merging nodes without branch edges in the 
motion graph. 

2) Searching Splicing Points 
Heck et al. [2] spliced two motions of finite length by 

temporal synchronization. But we cannot use this method 
because we treat motions of infinite length. Therefore, we 
search for splicing candidate points based on the degree of 
similarity between upper- and lower-body motions. First, we 
calculate the posture distance between the upper- and lower-
body motion graphs using the method of Kovar et al. [1]. We 
divide the posture distance into upper- and lower-body parts. 
Because the posture distance of the upper-body has a large 
value, the posture distance of the lower-body is not applied the 
calculation of degree of similarity. In addition, we use a 
segment center of gravity of the specific upper-body motions to 
calculate the posture distance of the upper-body motions. The 
segment center of gravity is one body segment parameter, 
calculated by dividing the point of a vector based on the mass 
ratio and its center [7].  

Next, in searched splicing candidate point, we calculate an 
amount of rotation of a pelvis joint based on the technique of 
Horn et al. [8], and correct spine of upper-body to satisfy an 
interlocking relation between upper- and lower-body. 

3) Calculation of Internodal Data 
Motion data acquired by the motion capture device only 

maintain the position data in the skeleton data for each frame 
and the rotation data for each joint. Therefore, we need to do a 
conversion and a reverse conversion for the skeleton data for 
every intermodal transition when we search for motion graphs 
to generate animations shown in Fig. 2. However, such 
processing takes a long time. To reduce the searching time for 
the motion graphs, we calculate the intermodal data that are  

 

Figure 2.  Overview of internodal calculation. 

 

Figure 3.  User interaction example. 

 
needed to search for the motion graphs. We calculate the 
number of frames, the Euclidean distance between nodes, and a 
transform matrix. 

C. Runtime 

1) User Interaction 
Our method provides three interactions: drawing a path, 

setting transition points, and setting splicing points. Figure 3 
shows a user interaction example. Users can freely draw a path 
(red line) for generating animation on a 2D ground. 
Additionally, they can freely set transition points (the point 
changing line color) and splicing points (blue point) on the 
drawn path. The transition points change the lower-body 
motion patterns and the splicing points change the combination 
between the lower- and upper-body motions. Therefore, we can 
generate animation in which the user edits the action timing 
and the moving direction on a 3D virtual space. 

2) Animation Synthesis based on Constraints 
To interactively generate animations based on the user-

specified constraints, we need to quickly search for the nodes 
of motion graphs. We search for them by a greedy algorithm to 
decrease the number of searches. However, if we choose the 
shortest transition distance for the user-drawn path in all cases, 
the distance errors of the transition increase. Therefore, we set 
a threshold of distance errors to prevent an increase of the 
distance errors between generating the animation's moving 
direction and the user-drawn path. If the distance errors exceed 
the threshold when searching for the shortest distance of 
transitions, we return to a former node and restart the search 
from the second shortest transition distance. As a result, we can 
prevent increased distance error. 

3) Synchronization between Upper- and Lower-bodies 
Spliced motion has a different velocity between the upper- 

and lower-bodies, because those bodies have different motion 
data. However, as described in Section Ⅲ .B.2, because 
animation generated from motion graphs is of infinite lengths, 
we cannot calculate a number of frames. So we cannot use 
temporal synchronization for the generated animation. Thus,  
 

 
 

  



 

Figure 4.  Generated animations. 

 
we synchronize the motion timing of infinite-length animation 
based on constraint points. 

First, we search splicing point from generated node 
sequence in Section Ⅲ.C.2. We use splicing point as a starting 
point of synchronization because splicing point has been 
already synchronized upper- and lower body. Then, if we can 
find second splicing point or transition point, we make the 
synchronizing range between splicing points or between 
splicing point and transition point. If we cannot find any 
splicing point and transition point, we set the synchronizing 
range based on supporting legs proposed by Menardais [6]. 

Next, we achieve synchronization using the technique of 
Kovar [5] within the set range. Finally, in order to correct the 
matching of the grounding timing in a motion, we correct the 
generated animation with the technique of Shin [9] and Inverse 
Kinematics (IK) based on the Cyclic-Coordinate Descent 
(CCD) method. Because the amount of calculation in the CCD 
method is light, convergence of the solution is fast. 

IV.  RESULTS AND DISCUSSION 

We evaluate the generation speed and the generation 
accuracy of the animations and show the generated animations 
based on the user-drawn path and the user-specified 
constraints.  

We used motion data published in the Motion Capture 
Database of Carnegie Mellon University (http:// 
mocap.cs.cmu.edu). The CPU and PC memory were Core 2 
Duo 2.4 GHz and 2 GB RAM. But we used a 1 core CPU with 
single thread programming. In this evaluation, we used a 
walking motion (1506 frames) and a running motion (761 
frames) for the lower-body motions and a boxing motion (1500 
frames) for the upper-body. The walking motion goes forward 
and backward, and the running motion runs in a circular 
pattern.  

We used three kinds of paths for the evaluation: straight 
line, turns to the left, and turns to the right. These paths were  
 

 

Figure 5.  Error distance of spine between spliced and original carry motions. 

 
also set by splicing and transition points. Moreover, we used 
the improved greedy algorithm to search for user-drawn paths. 

In addition, we show the computation time for each 
preprocessing and simplification result of the motion graphs. 
The construction times of the lower- and upper-body motion 
graphs were 70 and 10 minutes, respectively. The search time 
for the splice candidate points was 30 minutes, and the 
computation time for the information between nodes in the 
motion graphs was three hours. After simplification, the lower-
body motion graph reduced 240 nodes, the upper-body motion 
graph reduced 64 nodes. 

Figure 4 shows generated animations for three kinds of 
paths. The red motion is running, the blue motion is walking, 
and the green motion is boxing. These result show generated 
animations along the user-drawn paths with the transition and 
the splicing as the constraints. In addition, there are no velocity 
differentials of upper- and lower-body motions and no foot 
slidings. These results show that our method generated 
animations of basic movement patterns from several bits of 
motion data. Thus, we can generate complex animations by 
mixing these basic operations. In all the generated animation 
results, computation times from when the user started to draw a 
path and when the animation was generated were between 3 
and 23 seconds. So our method is fast enough to generate 
animations at interactive rates.  

Next, we show the animation generation accuracy and 
calculate the sum of the Euclidean distance between the 
original upper-body and the spliced upper-body spine. Then we 
calculate the error distance by normalizing them, because our 
method correctly spliced the upper-body spine by approaching 
the original upper-body. Fig. 5 shows the error distance of the 
spine between the spliced and the original carry motions. The 
left figure shows the posture difference when the error distance 
is the worst. From the left figure, the two postures are similar 
even in the worst case. The right figure shows that the average 
error distance is small. Our method can generate animation 
while preserving the posture features possessed by the original 
motion data. 

V. CONCLUSION AND FUTURE WORK 

This paper presented a novel method for editing human 
motion data. Our method interactively generates infinite-length 
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(b) left (22.4 sec) 

 

 
(c) right (18.8 sec) 



character animations with user-specified constraints. To 
generate the animations, we construct two motion graphs for 
the upper- and lower-bodies. Then we splice the generated 
upper- and lower-body motions. Our method can generate a 
variety of motions from a small amount of motion data. 
Moreover, we synchronized the upper- and lower-body 
motions to align the velocity differential. Therefore, we 
illustrated that our method can intractably generate animations 
along a user-specified path with user-specified transition and 
splicing points. 

Our method has some limitations. For example, it does not 
strictly consider constraints by environment. In future work, we 
will adapt such constraints as obstacles and stairs to our 
method and extend it for handling human motion data that do 
not stand on feet, e.g., forward rolling, crawling, and sliding. 
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