
Splicing Motion Graphs: Interactive Generation of
Character Animation

Kiyotaka Tamada† Shinya Kitaoka‡ Yoshifumi Kitamura＊
Graduate School of Information Science and Technology,

Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871
Japan

Tel.: +816-6877-5111
E-mail: †tamada. kiyotaka@gmail.com, ‡skitaoka@gmail.com, ＊kitamura@riec.tohoku.ac.jp

Abstract—We present a novel method of which synthesizes a
variety of transitions for multiple actions of human characters
from a small amount of motion data. This method effectively
combines both motion graphs and a splicing technique. So we call
the method splicing motion graphs. The motion graph represents
a set of motion segments using graph structure to store the
transition possibilities from one segment to another. We
independently construct motion graphs for the upper- and lower-
bodies to splice them. Furthermore, we propose a method to
synchronize the infinite length motions of the upper- and lower-
bodies. We show our method can efficiently generate animations
by illustrating synthesized motions and by evaluating the
generation speed and the generation accuracy of the animations.
We conclude our method is fast enough to generate animations at
interactive rates, allowing us to generate infinite-length character
animations with specified constraints.

Keywords-motion capture; motion synthesis; character
animation; motion graph; splicing

I. INTRODUCTION

Human characters with realistic motions are widely used in
a variety of media such as movies, video games, Metaverse,
and so on. To reproduce such motions, motion capture is often
used because it is reliable and useful. Motion sequences can
also be synthesized with a set of motion capture data by using
motion graphs [1] which preserve the quality of the original
motion data. Here users can control characters who can
perform a transition of multiple actions, and even infinite-
length animation of a human character can be generated.

A variety of character motions can be reproduced from a
limited amount of motion data stored in a database using a
splicing technique [2]; n× m character motions can be
generated from n locomotion data and m upper-body actions.
This technique is useful but it does not allow us to specify such
constraints as splicing points and paths along which to move
that are drawn on the ground.

This paper proposes splicing motion graphs which
synthesizes a variety of transitions of multiple actions of
human characters from a small number of motion data by
effectively combining both motion graphs and a splicing
technique. In addition to simply combining these two
techniques, a method to synchronize the motions of the upper-

and lower-bodies is proposed. Thus the method can synthesize
the realistic motions of human characters by interactively
specifying constraints.

II. RELATED WORK

Various techniques have been proposed for generating
human animations based on motion graphs [1]. Shin proposed a
fat graph that parameterizes similar transitions in the graph [3].
Animations can be controlled by a mouse and a joystick.
Moreover, Heck introduced a parametric motion graph that
generates a parametrical space from a similar motion segment
[4]. In this way, it can generate human animation in real-time.
However, these algorithms lose detailed behavior in the motion
data because they merge nodes that represent original motion
in the motion graphs.

In addition, many techniques for achieving synchronization
between two bits of motion data have been proposed. Kovar
synchronized with Dynamic Time Warping (DTW) based on
posture distance [5]. To generate natural movement
animations, this technique only synchronized similar motions.
Menardais proposed a real-time synchronization approach [6]
that achieved synchronization to combine the supporting legs
and DTW. However, this technique needs to search for the
ranges that can be synchronized beforehand. In this paper, we
achieve synchronization by combining [5] and [6].

III. ANIMATION GENERATION

A. Method Overview

To interactively generate animations based on user-
specified constraints, we have to execute processing that
searches for necessary motions from motion graphs and
synchronizes the velocity differential between upper- and
lower-body motions after the user draws a path. So we execute
other processing as preprocessing. Fig. 1 shows the flow of our
method and its two parts: preprocessing and runtime. In
preprocessing, we calculate some data that need for generating
animation. In runtime, we generate animation based on user-
specified constraints.

Figure 1. Flow of our method.

B. Preprocess

1) Creation of Motion Graphs
We represent motions using a standard skeleton model. For

splicing, we divide the motion data into upper- and lower-body
motions with a central focus on the pelvis based on the method
[2].

After defining the motion data, we independently construct
two types of motion graphs: an action for the upper-body and a
movable one for the lower-body. These motion graphs are
constructed from a given motion data set by the standard
construction technique [1]. Here, we also use mirroring motion
data to deal with the user-specified constraints flexibly. Then,
we simplify the constructed motion graphs to reduce
calculation costs by merging nodes without branch edges in the
motion graph.

2) Searching Splicing Points
Heck et al. [2] spliced two motions of finite length by

temporal synchronization. But we cannot use this method
because we treat motions of infinite length. Therefore, we
search for splicing candidate points based on the degree of
similarity between upper- and lower-body motions. First, we
calculate the posture distance between the upper- and lower-
body motion graphs using the method of Kovar et al. [1]. We
divide the posture distance into upper- and lower-body parts.
Because the posture distance of the upper-body has a large
value, the posture distance of the lower-body is not applied the
calculation of degree of similarity. In addition, we use a
segment center of gravity of the specific upper-body motions to
calculate the posture distance of the upper-body motions. The
segment center of gravity is one body segment parameter,
calculated by dividing the point of a vector based on the mass
ratio and its center [7].

Next, in searched splicing candidate point, we calculate an
amount of rotation of a pelvis joint based on the technique of
Horn et al. [8], and correct spine of upper-body to satisfy an
interlocking relation between upper- and lower-body.

3) Calculation of Internodal Data
Motion data acquired by the motion capture device only

maintain the position data in the skeleton data for each frame
and the rotation data for each joint. Therefore, we need to do a
conversion and a reverse conversion for the skeleton data for
every intermodal transition when we search for motion graphs
to generate animations shown in Fig. 2. However, such
processing takes a long time. To reduce the searching time for
the motion graphs, we calculate the intermodal data that are

Figure 2. Overview of internodal calculation.

Figure 3. User interaction example.

needed to search for the motion graphs. We calculate the
number of frames, the Euclidean distance between nodes, and a
transform matrix.

C. Runtime

1) User Interaction
Our method provides three interactions: drawing a path,

setting transition points, and setting splicing points. Figure 3
shows a user interaction example. Users can freely draw a path
(red line) for generating animation on a 2D ground.
Additionally, they can freely set transition points (the point
changing line color) and splicing points (blue point) on the
drawn path. The transition points change the lower-body
motion patterns and the splicing points change the combination
between the lower- and upper-body motions. Therefore, we can
generate animation in which the user edits the action timing
and the moving direction on a 3D virtual space.

2) Animation Synthesis based on Constraints
To interactively generate animations based on the user-

specified constraints, we need to quickly search for the nodes
of motion graphs. We search for them by a greedy algorithm to
decrease the number of searches. However, if we choose the
shortest transition distance for the user-drawn path in all cases,
the distance errors of the transition increase. Therefore, we set
a threshold of distance errors to prevent an increase of the
distance errors between generating the animation's moving
direction and the user-drawn path. If the distance errors exceed
the threshold when searching for the shortest distance of
transitions, we return to a former node and restart the search
from the second shortest transition distance. As a result, we can
prevent increased distance error.

3) Synchronization between Upper- and Lower-bodies
Spliced motion has a different velocity between the upper-

and lower-bodies, because those bodies have different motion
data. However, as described in Section Ⅲ .B.2, because
animation generated from motion graphs is of infinite lengths,
we cannot calculate a number of frames. So we cannot use
temporal synchronization for the generated animation. Thus,

Figure 4. Generated animations.

we synchronize the motion timing of infinite-length animation
based on constraint points.

First, we search splicing point from generated node
sequence in Section Ⅲ.C.2. We use splicing point as a starting
point of synchronization because splicing point has been
already synchronized upper- and lower body. Then, if we can
find second splicing point or transition point, we make the
synchronizing range between splicing points or between
splicing point and transition point. If we cannot find any
splicing point and transition point, we set the synchronizing
range based on supporting legs proposed by Menardais [6].

Next, we achieve synchronization using the technique of
Kovar [5] within the set range. Finally, in order to correct the
matching of the grounding timing in a motion, we correct the
generated animation with the technique of Shin [9] and Inverse
Kinematics (IK) based on the Cyclic-Coordinate Descent
(CCD) method. Because the amount of calculation in the CCD
method is light, convergence of the solution is fast.

IV. RESULTS AND DISCUSSION

We evaluate the generation speed and the generation
accuracy of the animations and show the generated animations
based on the user-drawn path and the user-specified
constraints.

We used motion data published in the Motion Capture
Database of Carnegie Mellon University (http://
mocap.cs.cmu.edu). The CPU and PC memory were Core 2
Duo 2.4 GHz and 2 GB RAM. But we used a 1 core CPU with
single thread programming. In this evaluation, we used a
walking motion (1506 frames) and a running motion (761
frames) for the lower-body motions and a boxing motion (1500
frames) for the upper-body. The walking motion goes forward
and backward, and the running motion runs in a circular
pattern.

We used three kinds of paths for the evaluation: straight
line, turns to the left, and turns to the right. These paths were

Figure 5. Error distance of spine between spliced and original carry motions.

also set by splicing and transition points. Moreover, we used
the improved greedy algorithm to search for user-drawn paths.

In addition, we show the computation time for each
preprocessing and simplification result of the motion graphs.
The construction times of the lower- and upper-body motion
graphs were 70 and 10 minutes, respectively. The search time
for the splice candidate points was 30 minutes, and the
computation time for the information between nodes in the
motion graphs was three hours. After simplification, the lower-
body motion graph reduced 240 nodes, the upper-body motion
graph reduced 64 nodes.

Figure 4 shows generated animations for three kinds of
paths. The red motion is running, the blue motion is walking,
and the green motion is boxing. These result show generated
animations along the user-drawn paths with the transition and
the splicing as the constraints. In addition, there are no velocity
differentials of upper- and lower-body motions and no foot
slidings. These results show that our method generated
animations of basic movement patterns from several bits of
motion data. Thus, we can generate complex animations by
mixing these basic operations. In all the generated animation
results, computation times from when the user started to draw a
path and when the animation was generated were between 3
and 23 seconds. So our method is fast enough to generate
animations at interactive rates.

Next, we show the animation generation accuracy and
calculate the sum of the Euclidean distance between the
original upper-body and the spliced upper-body spine. Then we
calculate the error distance by normalizing them, because our
method correctly spliced the upper-body spine by approaching
the original upper-body. Fig. 5 shows the error distance of the
spine between the spliced and the original carry motions. The
left figure shows the posture difference when the error distance
is the worst. From the left figure, the two postures are similar
even in the worst case. The right figure shows that the average
error distance is small. Our method can generate animation
while preserving the posture features possessed by the original
motion data.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel method for editing human
motion data. Our method interactively generates infinite-length

(a) straight (3.2 sec)

(b) left (22.4 sec)

(c) right (18.8 sec)

character animations with user-specified constraints. To
generate the animations, we construct two motion graphs for
the upper- and lower-bodies. Then we splice the generated
upper- and lower-body motions. Our method can generate a
variety of motions from a small amount of motion data.
Moreover, we synchronized the upper- and lower-body
motions to align the velocity differential. Therefore, we
illustrated that our method can intractably generate animations
along a user-specified path with user-specified transition and
splicing points.

Our method has some limitations. For example, it does not
strictly consider constraints by environment. In future work, we
will adapt such constraints as obstacles and stairs to our
method and extend it for handling human motion data that do
not stand on feet, e.g., forward rolling, crawling, and sliding.

REFERENCES
[1] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM

Transactions on Graphics (SIGGRAPH '02), Vol. 21, No. 3, pp. 473-482,
2002.

[2] R. Heck, L. Kovar, and M. Gleicher, “Splicing upper-body actions with
locomotion,” Computer Graphics Forum (Eurographics '06), Vol. 17,
No. 3-4, pp. 219-227, 2006.

[3] H. J. Shin and H. S. Oh, “Fat Graphs: Constructing an interactive
character with continuous controls,” In Proc. of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
'06), pp. 402-408, 2006.

[4] R. Heck and M. Gleicher, “Parametric motion graphs,” In Proc. of the
Symposium on Interactive 3D Graphics and Games (i3D '07), pp. 129-
136, 2007.

[5] L. Kovar and M. Gleicher, “Flexible automatic motion blending with
registration curves,” In Proc. of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA '03), pp. 214-224, 2003.

[6] S. Menardais, R. Kulpa, F. Multon, and B. Arnaldi, “Synchronization for
dynamic blending of motions,” In Proc. of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
'04), pp. 325-335, 2004.

[7] Michiyoshi Ae, Hai peng Tang, and Takashi Yokoi, “Estimation of
Inertia Properties of The Body Segments in Japanese Athletes,”
Japanese Journal of Sports Science, Vol. 15, No. 3, pp. 155-162, 1996.
(in Japanese)

[8] B. K. P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America A, Vol. 4, No. 4,
pp. 629-642, 1987.

[9] H. Shin, J. Lee, S. Shin, and M. Gleicher, “Computer puppetry: an
importance-based approach,” ACM Transactions on Graphics
(SIGGRAPH '01), Vol. 20, No. 2, pp. 67-94, 2001.

