Splicing Motion Graphs: Interactive Generation of
Character Animation

Kiyotaka Tamada

Shinya Kitaoka

Yoshifumi Kitamura

Graduate School of Information Science and Techgwlo
Osaka University, 1-1 Yamadaoka, Suita, Osaka,58E
Japan
Tel.: +816-6877-5111
E-mail: "tamadakiyotaka@gmail.com! skitaoka@gmail.com kitamura@riec.tohoku.ac.jp

Abstract—We present a novel method of which synthesizes a
variety of transitions for multiple actions of human characters
from a small amount of motion data. This method effetively
combines both motion graphs and a splicing technicqu So we call
the method splicing motion graphs. The motion graph represents
a set of motion segments using graph structure tot@me the
transition possibilities from one segment to anothe We
independently construct motion graphs for the upper and lower-
bodies to splice them. Furthermore, we propose a rfed to
synchronize the infinite length motions of the uppe and lower-
bodies. We show our method can efficiently genera@nimations
by illustrating synthesized motions and by evaluatig the
generation speed and the generation accuracy of tlaimations.
We conclude our method is fast enough to generatamianations at
interactive rates, allowing us to generate infinitdength character
animations with specified constraints.

Keywords-motion capture; motion synthesis; character
animation; motion graph; splicing
I INTRODUCTION

Human characters with realistic motions are widedgd in
a variety of media such as movies, video gamesaWwese,
and so on. To reproduce such motions, motion capsuoften
used because it is reliable and useful. Motion sages can
also be synthesized with a set of motion captuta dg using
motion graphs [1] which preserve the quality of tireginal
motion data. Here users can control characters waéo
perform a transition of multiple actions, and evefinite-
length animation of a human character can be gestera

A variety of character motions can be reproducednfia
limited amount of motion data stored in a databasieag a
splicing technique [2];n X m character motions can be
generated frorm locomotion data anch upper-body actions.
This technique is useful but it does not allowaispecify such
constraints as splicing points and paths along lviicmove
that are drawn on the ground.

This paper proposessplicing motion graphswhich
synthesizes a variety of transitions of multipletiats of
human characters from a small number of motion dsta
effectively combining both motion graphs and a cpd
technique. In addition to simply combining theseotw
techniques, a method to synchronize the motiorthefipper-

and lower-bodies is proposed. Thus the method yathesize
the realistic motions of human characters by imt@raly
specifying constraints.

Il. RELATED WORK

Various techniques have been proposed for gengratin
human animations based on motion graphs [1]. Stuipgsed a
fat graph that parameterizes similar transitionthengraph [3].
Animations can be controlled by a mouse and a kst
Moreover, Heck introduced a parametric motion grapdt
generates a parametrical space from a similar matEgment
[4]. In this way, it can generate human animatiomeal-time.
However, these algorithms lose detailed behavithénmotion
data because they merge nodes that representabrigotion
in the motion graphs.

In addition, many techniques for achieving synciration
between two bits of motion data have been propokedar
synchronized with Dynamic Time Warping (DTW) basad
posture distance [5]. To generate natural movement
animations, this technique only synchronized simitetions.
Menardais proposed a real-time synchronization Gaagr [6]
that achieved synchronization to combine the suppptegs
and DTW. However, this technique needs to searchthfe
ranges that can be synchronized beforehand. Irptpsr, we
achieve synchronization by combining [5] and [6].

Ill. ANIMATION GENERATION

A. Method Overview

To interactively generate animations based on user-
specified constraints, we have to execute procgssiat
searches for necessary motions from motion grapis a
synchronizes the velocity differential between uppand
lower-body motions after the user draws a pathw8@xecute
other processing as preprocessing. Fig. 1 showiativeof our
method and its two parts: preprocessing and runtime
preprocessing, we calculate some data that neegefarating
animation. In runtime, we generate animation basediser-
specified constraints.

Runtime (IL.C)

Preprocess (II.B)

Select Motion Data
Create Motion Graph (II.B.1)

Searching Spgcing Point (II.B.2)

User Interaction (II.C.1)

Animation Synthesis

Spatial Alignment based on Constraints (II.C.2)

Calculate Internodal Data (II.B.3) Synchronizatit)n (IL.C.3)

Generate Animation

Figure 1. Flow of our method.

B. Preprocess

1) Creation of Motion Graphs
We represent motions using a standard skeleton Imiole
splicing, we divide the motion data into upper- &mder-body
motions with a central focus on the pelvis basethermethod

[2].

After defining the motion data, we independentiystouct
two types of motion graphs: an action for the ugpmy and a
movable one for the lower-body. These motion graptes
constructed from a given motion data set by thedsted
construction technique [1]. Here, we also use mimgomotion
data to deal with the user-specified constrairggilfly. Then,

z
ﬂaracter
..... X £3 ../D?rection

Rind
o

Motion graph Virtual environment

Figure 2. Overview of internodal calculation.

Splicing point

Transition point

Start

Figure 3. User interaction example.

needed to search for the motion graphs. We cakula
number of frames, the Euclidean distance betwedrs)@nd a
transform matrix.

C. Runtime

we simplify the constructed motion graphs to reduce 1) User Interaction

calculation costs by merging nodes without brarudes in the
motion graph.

2) Searching Splicing Points

Heck et al. [2] spliced two motions of finite lehgby
temporal synchronization. But we cannot use thighot
because we treat motions of infinite length. Themef we
search for splicing candidate points based on tgreg of
similarity between upper- and lower-body motiongst- we
calculate the posture distance between the upperlawer-
body motion graphs using the method of Kovar ef1dl. We
divide the posture distance into upper- and lowaybparts.
Because the posture distance of the upper-bodyahiasge
value, the posture distance of the lower-body isapplied the
calculation of degree of similarity. In addition,ewuse a
segment center of gravity of the specific upperybabtions to
calculate the posture distance of the upper-bodijoms The
segment center of gravity is one body segment peten
calculated by dividing the point of a vector basedthe mass
ratio and its center [7].

Next, in searched splicing candidate point, wedate an
amount of rotation of a pelvis joint based on thehhique of
Horn et al. [8], and correct spine of upper-bodys#tisfy an
interlocking relation between upper- and lower-hody

3) Calculation of Internodal Data
Motion data acquired by the motion capture devioly o
maintain the position data in the skeleton dataefeh frame
and the rotation data for each joint. Therefore,ed to do a
conversion and a reverse conversion for the skeld&ia for
every intermodal transition when we search for ortjraphs

Our method provides three interactions: drawingashp
setting transition points, and setting splicingntei Figure 3
shows a user interaction example. Users can faraly a path
(red line) for generating animation on a 2D ground.
Additionally, they can freely set transition poinfthe point
changing line color) and splicing points (blue fpian the
drawn path. The transition points change the lovety
motion patterns and the splicing points changectimbination
between the lower- and upper-body motions. Theegfoe can
generate animation in which the user edits theoadiiming
and the moving direction on a 3D virtual space.

2) Animation Synthesis based on Constraints

To interactively generate animations based on ther-u
specified constraints, we need to quickly searchtiie nodes
of motion graphs. We search for them by a greedgriahm to
decrease the number of searches. However, if wesehthe
shortest transition distance for the user-drawh pagll cases,
the distance errors of the transition increaserdfbee, we set
a threshold of distance errors to prevent an isereaf the
distance errors between generating the animationwsing
direction and the user-drawn path. If the distagrcers exceed
the threshold when searching for the shortest mtistaof
transitions, we return to a former node and regtatsearch
from the second shortest transition distance. fesalt, we can
prevent increased distance error.

3) Synchronization between Upper- and Lower-bodies
Spliced motion has a different velocity between upger-
and lower-bodies, because those bodies have diffenetion
data. However, as described in Sectifih.B.2, because
animation generated from motion graphs is of itdinengths,

to generate animations shown in Fig. 2. Howevethsu e cannot calculate a number of frames. So we tanse

processing takes a long time. To reduce the sewy¢hme for
the motion graphs, we calculate the intermodal tathare

temporal synchronization for the generated animatithus,

e .

%3 5 S80Sy

(a) straight (3.2 sec)

(c) right (18.8 sec)

Figure 4. Generated animations.

we synchronize the motion timing of infinite-lengihimation
based on constraint points.

We used three kinds of paths for the evaluatioraigtit
line, turns to the left, and turns to the righte$a paths were

1.2

TN VAWA
2ol VAN ’
S ol vV Vi [/

0.2 v

Aqua-Blue : Proposal 151 101 151 201 251 301 351 401 451
Blue : Original Time(frame)

Figure 5. Error distance of spine between spliced and origiaay motions.

also set by splicing and transition points. Morepwee used
the improved greedy algorithm to search for usemtrpaths.

In addition, we show the computation time for each
preprocessing and simplification result of the motgraphs.
The construction times of the lower- and upper-batytion
graphs were 70 and 10 minutes, respectively. Thecheime
for the splice candidate points was 30 minutes, &mel
computation time for the information between nodleshe
motion graphs was three hours. After simplificatitire lower-

First, we search splicing point from generated nodéody motion graph reduced 240 nodes, the upper-baation
sequence in Sectidlil.C.2. We use splicing point as a startinggraph reduced 64 nodes.

point of synchronization because splicing point Heeen
already synchronized upper- and lower body. Thiewei can
find second splicing point or transition point, weake the
synchronizing range between splicing points or ketw
splicing point and transition point. If we cannonhd any
splicing point and transition point, we set the cwonizing
range based on supporting legs proposed by Meisdi@lai

Next, we achieve synchronization using the tectmiqti
Kovar [5] within the set range. Finally, in order ¢orrect the
matching of the grounding timing in a motion, warect the
generated animation with the technique of Shiraj8] Inverse
Kinematics (IK) based on the Cyclic-Coordinate [gc
(CCD) method. Because the amount of calculatiothénCCD
method is light, convergence of the solution is.fas

IV. RESULTS ANDDISCUSSION

Figure 4 shows generated animations for three kivfds
paths. The red motion is running, the blue mot®nvalking,
and the green motion is boxing. These result shemeted
animations along the user-drawn paths with thesttian and
the splicing as the constraints. In addition, theeeno velocity
differentials of upper- and lower-body motions amal foot
slidings. These results show that our method gésdra
animations of basic movement patterns from seveital of
motion data. Thus, we can generate complex animatiny
mixing these basic operations. In all the generatgichation
results, computation times from when the useredai draw a
path and when the animation was generated wereebat8
and 23 seconds. So our method is fast enough teraten
animations at interactive rates.

Next, we show the animation generation accuracy and
calculate the sum of the Euclidean distance betwien

We evaluate the generation speed and the generati®figinal upper-body and the spliced upper-body epithen we

accuracy of the animations and show the generatietbtions

calculate the error distance by normalizing thestduse our

based on the user-drawn path and the user-specifigdethod correctly spliced the upper-body spine kyyragching

constraints.

the original upper-body. Fig. 5 shows the errotattise of the
spine between the spliced and the original carryians. The

We used motion data published in the Motion Capturgeft figure shows the posture difference when theredistance

Database of Carnegie Mellon University

(http://js the worst. From the left figure, the two postueee similar

mocap.cs.cmu.edu). The CPU and PC memory were Zoregyen in the worst case. The right figure shows thataverage

Duo 2.4 GHz and 2 GB RAM. But we used a 1 core @Rt

single thread programming. In this evaluation, wsedi a
walking motion (1506 frames) and a running motiai1(
frames) for the lower-body motions and a boxingiomo{1500
frames) for the upper-body. The walking motion gémsvard

and backward, and the running motion runs in autarc
pattern.

error distance is small. Our method can generaimadion
while preserving the posture features possessehdebgriginal
motion data.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel method for editing amum
motion data. Our method interactively generategiieflength

character animations with user-specified constgainto
generate the animations, we construct two moti@plgs for
the upper- and lower-bodies. Then we splice theeggad
upper- and lower-body motions. Our method can geaeea
variety of motions from a small amount of motiontada
Moreover, we synchronized the upper- and
motions to align the velocity differential. Theredp we
illustrated that our method can intractably gereegatimations
along a user-specified path with user-specifiedsitaon and
splicing points.

Our method has some limitations. For example, ésdoot
strictly consider constraints by environment. Itufe work, we
will adapt such constraints as obstacles and stairour
method and extend it for handling human motion diaéa do
not stand on feet, e.g., forward rolling, crawliagd sliding.

REFERENCES

[1] L. Kovar, M. Gleicher, and F. Pighin, “Motion graph ACM
Transactions on Graphics (SIGGRAPH '02pl. 21, No. 3, pp. 473-482,
2002.

[2] R. Heck, L. Kovar, and M. Gleicher, “Splicing upgssdy actions with
locomotion,” Computer Graphics Forum (Eurographics '06jol. 17,
No. 3-4, pp. 219-227, 2006.

(3]

(4]

lower-body

(5]

(6l

(7]

(8]

H. J. Shin and H. S. Oh, “Fat Graphs: Constructamg interactive
character with continuous controls,” IrProc. of the ACM
SIGGRAPH/Eurographics Symposium on Computer AnimafSCA
'06), pp. 402-408, 2006.

R. Heck and M. Gleicher, “Parametric motion graplrs,Proc. of the
Symposium on Interactive 3D Graphics and Games (@81 pp. 129-
136, 2007.

L. Kovar and M. Gleicher, “Flexible automatic matitlending with
registration curves,” InProc. of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA,'fB) 214-224, 2003.

S. Menardais, R. Kulpa, F. Multon, and B. Arnaf@ynchronization for
dynamic blending of motions,” In Proc. of the ACM
SIGGRAPH/Eurographics Symposium on Computer AromafSCA
'04), pp. 325-335, 2004.

Michiyoshi Ae, Hai peng Tang, and Takashi Yokoi,stihation of
Inertia Properties of The Body Segments in Japanktdetes,”
Japanese Journal of Sports Sciendel. 15, No. 3, pp. 155-162, 1996.
(in Japanese)

B. K. P. Horn, “Closed-form solution of absolutéemtation using unit
quaternions,Journal of the Optical Society of AmericaVfol. 4, No. 4,
pp. 629-642, 1987.

H. Shin, J. Lee, S. Shin, and M. Gleicher, “Compyteppetry: an

importance-based approach,ACM Transactions on Graphics
(SIGGRAPH '01) Vol. 20, No. 2, pp. 67-94, 2001

